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Chapter 1

Special Relativity

1.1 Basic Principles of Special Relativity

Albert Einstein proposed the theory of special relativity (SR) in 1905. The the-
ory of special relativity was proposed in the paper “On the Electrodynamics of
Moving Bodies.” The inconsistency of Maxwell’s equations of electromanetism
and Newtonian mechanics as well as the lack of a luminiferous aether led to
the proposal of special relativity. Special relativity described the relationship
between space and time and objects traveling at velocities close to the speed of
light in the absence of gravitational fields.

Special Relativity is based upon two fundamental postulates:

1 Principle of Relativity: It is not possible to find the absolute ve-
locity of an observer as his velocity depends on the use of a reference frame.
Thus, the laws of physics stay the same in all inertial frames of reference. In
other words, one can not calculate their velocity without using something else
to act as a reference point.

2 Speed of Light: The speed of light c is approximately 3 x 108 m/s
for all observers. Regardless of the state of motion of the observers relative to
a light source or each other, the observers will measure the speed of the same
photons to always be c

1.2 Inertial Observer in Special Relativity

The term ”observers” is very common in relativity. It refers to a data collector.
Specifically, an observer refers to a information-gathering system rather than
an human individual. An inertial observer records information for a location
(x, y, z) at a time (t). An observer must satisfy the three following conditions
to be considered an interial observe:
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1 The distance between two points is independent of time

2 Clocks, any device to measure the passage of time, that are located
at regular increments are synchronized and run at the same rate

3 Space has a Euclidean geometry at any constant time. Euclidean ge-
ometry is the type of geomtry that you see in day to day life.

An observation by an inertial observer is defined as recording the location
of an event (x, y, z) and recording the time on the clock at x, y, z. An inertial
observer is also known as an inertial reference frame.

1.3 Natural Units

To help simplify measurements, c will now be defined as having a value of 1
rather than 3 x 108 m/s. Time will also be defined in meters rather than seconds.
Similar to how a measure of time is a light-year (The distance light travels in
one year), we can use light-meters as a measure of time. The distance light
travels over a time interval of one meter is also one meter.

c =
Distance Light Travels Over a T ime Interval

T ime Interval

c =
1m

1m
= 1

Since, light has traveled one meter over a time interval of one meter, we
can simply the speed of light as “1”. Since c is now defined as 1, we can use the
following relationship

c = 3× 108 m/s = 1

1 s = 3× 108m

1m =
1

3× 108
s

1.4 Spacetime Diagrams

Spacetime Diagrams are a tool to describe the relationships between position
and time. Since it is difficult to visualize and draw a 4D diagram, it is easier
to set one or two spatial values (x, y, or z) to zero and then draw the remaing
dimensions. Figure 1.1 shows a slice of spacetime, the t-x plane. The spacial
dimensions of y and z have been set to zero. Also, the following definitions will
be essential to our study of special relativity:
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1 Event: A single point in space at a fixed position in space and a fixed
t in which something happens. This can refer to anything such as a detector
being activated, a light bulb turning on, an object moving from rest, etc.

2 World Line: A world line of a particle represents its position in
space at different times. It’s essentially the path that an object takes in space
through the passage of time.

Figure 1.1: Spacetime Diagram of World Lines for Different Velocities

This diagram depicts the world lines of objects at various velocities. Note
the units for the spacetime time graph. Both position and time are in meters
since both time and position can be meters through the use of natural units.
Unlike usual kimematic graphs, time is on the y axis rather than the x axis as
well in a time-position graph. Under natural units, the speed of light is also
defined as 1, therefore the velocities depicted in the spacetime graph does not
refer to 1 m/s. Since the speed of light is defined as 1, a light ray has a world
line of 45◦ as depicted by the diagram.

Similar to how the slope of a position-time graph gives velocity, we can
apply the same concepts to a time-position graph.

Slope for a Position-Time Graph

v =
x

t
(1.1)

v =
x1 − x2
t1 − t2

=
dx

dt
(1.2)
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This equation is very frequent when learning kinematic formulas. If you
notice, this equation applies for a position-time graph, however a spacetime
graph is defined as a time-position graph in which time is the y axis and x po-
sition is the x axis. Since the axis flip, the equation must flip as well. Therefore
the slope for a spacetime graph does not give v, but rather:

1

v
=
dx

dt
(1.3)

This is the slope of a particle’s world line in a space-time graph and its
relationship to velocity.

1.5 Conventions in Special Relativity

In special relativity, the following conventions are frequently used

1 Events are denoted by cursive capital letters such as A ,B,C . The
capital letter O does not indicate events, but rather it indicated observers.

2 Coordinates are defined as the following (t,x,y,z ). Time is defined
by t whereas space is defined by x,y,z. For example, (1, 3.2, 7, -2.7) refers to
t=1, x=3.2, y=7, z=-2.7. Remember that since we use natural units, time is
measured in meters. The spatial components x,y,z are measured in meters as
well.

3 The coordinates (t,x,y,z ) can also be refered to as (x0,x1,x2,x3). The
superscripts are not exponents, but rather they act as labels. Similar to how
subscripts were used to keep track of points (e.g. x1 or xA), superscripts are
used the same way. These labels are kown as indices. Since these superscripts
act as labels rather than exponents, (x2)3 refers to the y3 and not x6.

4 Latin and Greek indices are frequently use to assist in labeling coor-
dinates. A common conventition is that the Greek alphabet such as µ and υ is
used to describe both space and time components. Greek indices take values of
0, 1, 2, or 3. On the other hand, the Latin alphabet such as i and j is reserved
for spatial components only. Latin indices take values of 1, 2 or 3.

1.6 Coordinate System Relative to Another Ob-
server

Since all observers detect the same events (in the same spacetime), we can draw
coordinate systems relative to each observer. For example, an observer O has
the coordinates (t,x). Another observer O is moving with a velocity v in the x
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direction. Thus his coordinates are (t,x). If we ignore the spatial components y
and z by setting them to zero, the time-position plane for O is the following:

Figure 1.2: Time-Position Diagram For Observer O

From O’s point of view, O appears to be moving. From O’s point of view,
O appears to be moving. Therefore for O, as time passes (t), his position does
not change, but he notices that O’s position is changing. O belives that as time
passes for him (t), his position does not change (x). According to kinematics,
x = v × t. Therefore, from O’s perspective, O has a velocity. If this is difficult
to grasp, pretend an individual named Isabella is on a plane while her friend
Emma is on the ground. From Emma’s perspective, the plane with Isabella is
moving in the sky. When Isabella looks out the window, she sees that the ground
beneath her (Emma) is moving. In this case, Emma is O whereas Isabella is O.
Velocity is relative!

Figure 1.3: Velocity of O relative to O

From O’s perspective, as time passes (t), his position stays the same (x).
Therefore as t passes, x is equal to 0 for O’s perspective. Thus the velocity line
that O saw, acts as the t axis since position (x) stays zero as t passes for the
observer O.

Refer back to the airplane example. From Emma’s perspective, her friend
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on the plane is moving with a velocity. From Isabella’s perspective, Emma is
moving on the ground while her plane is still in the air. Emma’s velocity line
that she observes is the same as Isabella’s time axis because as time passes for
Isabella, her position (x) stays zero.

Figure 1.4: t axis

We have found the location of the t axis, now we need to find the x axis.

Figure 1.5: Light Ray for Observer O

Since c has a value of 1 as defined by natural units, the slope of the light
ray is one, thus the amount of time that passes is equal to the distance traveled
by the light ray. On Figure 1.5, a light ray originated at a position zero (for
observer O) at a time of -a. Over the time interval of -a to 0, the light ray
travels a distance of a. At event B, the ligh ray is reflected back towards its
origin. From the time interval 0 to a, the light ray returns back to its origin
where x equals 0. You can clearly see in the diagram that light travels at 45◦.
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Now lets say that two light rays are released. One is released at ”a” whereas
the other one is released at ”-a.” If you track the path of the light rays, both
of them would intersect at Event B as depicted by the diagram. This indicates
that for O, the x and t axis are perpendicular to each other.

The following is the spacetime diagram for O.

Figure 1.6: Light Ray for Observer O

First, lets explain how the x axis was created. If you recall from Figure
1.5, the light rays were traveling at 45◦. Therefore, when you draw two light
rays originating from -a and a, you end up with these light rays intersecting at
B. Then we draw a line from the origin through B which gives us our x. Now
what does x axis represent? The x axis represents the various points that an
object can be located at for t = 0.

Since the x and t axis are perpendicular to each other, as seen in Figure
1.5, the angle between the t and t axis is the same as the angle between x and
x axis. The following figure shows these angles1.

1Figure obtained from: A First Course in General Relativity: Second Edition by Bernard
Schutz.
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Figure 1.7: Spacetime Diagram of O

From O’s point of view, O is moving to the right. Therefore O sees that
O is moving to the left. The spacetime diagram for O is similar to O except it
is towards the left. Figure 1.82 depicts this diagram.

Figure 1.8: Spacetime Diagram of O

These diagrams will be used later on to assist in deriving the Lorentz
Contraction.

1.7 The Spacetime Interval

As we know, at high velocities, there is the bending of spacetime. Therefore we
can no longer use the traditional way to measure distance in 3D space through
the Pythagorean theorem which is

(∆d)2 = (∆x)2 + (∆y)2 + (∆z)2

2Figure obtained from: A First Course in General Relativity: Second Edition by Bernard
Schutz.
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Now we need to account for the bending of spacetime. Since light is
measured at a constant velocity of c regardless of observers, it can be used to
help create a formula to measure the spacetime interval ((∆s)2), the seperation
between two events by time and space.

(∆s)2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

The value of the spacetime interval is the same for all observers regard-
less of their motion. Any observer may calculate a different value of ∆t3, ∆x,
∆y, or ∆z, but the spacetime interval will always stay the same for the an event.

Usually, we refer to the spacetime interval as (∆s)2 rather than as (∆s).
The spacetime interval can be positive, zero, or negative:

1 A positive spacetime interval is known as being spacelike. In a space-
like interval, an object can only be present at two certain events (locations) if
it travels at a velocity greater than the speed of light.

2 A negative spacetime interval is known as being timelike. In a timelike
interval, an object can be present at two events if it travels at a speed less than
the speed of light.

3 If the spacetime interval equals zero, then the interval is called light-
like. Finally, during a lightlike event, an object can only be present at two
events if it travels at the speed of light. If two events are too far apart, an
object can not reach the event unless it has more time to reach it.

We can also use the spacetime interval equation to reinforce the concept
of the speed of light. A lightlike interval is when ∆s2 is zero, so we have the
following equation:

(∆s)2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

0 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

(∆x)2 + (∆y)2 + (∆z)2 = (∆t)2

(∆x)2 + (∆y)2 + (∆z)2

(∆t)2
= 1

From the Pythagorean Theorem, we know (∆d)2 = (∆x)2+(∆y)2+(∆z)2

3Recall that since we are using natural units, (∆t)2 is measured in meters. If we were not
using natural units, the term (∆t)2 would be (∆ct)2. Both (∆t)2 and (∆ct)2 describe the
distance light travels over a specific time interval.
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v2 =
(∆d)2

(∆t)2

v = ±∆d

∆t

If we use 1m for distance and 1m for time (natural units), we get:

v =
1m

1m
= ±1

We have demonstrated that the speed of light is indeed 1 according to
the lightlike spacetime interval.

The spacetime interval is an important concept in understanding special
relativity. All observers, regardless of their motion, will measure the spacetime
interval to be the equal to each other for the same two events (∆s2 = ∆s2). Al-
though physical distance and the passage of time may change due to relativistic
speeds, the spacetime interval will always stay the same for an event.

1.7.1 Spacetime Interval and Geometry

Lets prove that ∆s2 = ∆s2 or in other words, prove that the spacetime interval
stays the same for two observers for an event. This is also known as the invari-
ance of the spacetime interval. Initially, let’s use geometry to help visualize the
invariance of the spacetime interval.

If you recall, the Pythagorean Theorem is a2 + b2 = c2 or rather ∆a2 +
∆b2 = ∆c2.

Figure 1.9: The Pythagorean Triangle

Now lets treat this as a vector from the origin rather than a line between
two points.
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Figure 1.10: A Vector Starting at the Origin

As you can see, the vector can be split into an x and y component. If you
use the Pythagorean Theorem, you end up with the magnitude of the vector.
We can simulate the presence of another observer by rotating, translating, etc.
the graph. For this problem, lets rotate the axis to indicate another observer.

Figure 1.11: Rotation of Axis to Simulate Another Observer’s Frame of Refer-
ence

Due to the rotation, both observers have a different frame of reference.
Each observer calculates a different value of x and y.

Although they have a different frame of reference, the magnitude of the
vector stays the same for both observers. Note that the angle between the y
and y’ axis as well as the x and x’ axis is the same. The x’ and y’ axis are
perpendicular to each other which is why the angles are the same.
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Figure 1.12: The Second Observer Calculates Different Values for x and y

The angle between the vector and the x’ axis is some unknown number
known as a. Now we use trigonometry.√

x12 + y12cos(a) = x′1√
x12 + y12sin(a) = y′1

We know that the magnitude of the vector equals
√
x12 + y12. The for-

mula for the magnitude of the vector for the second observer is the same as well√
x′1

2 + y′1
2.

Now, we plug in the values for x′1 and y′1 that we obtained from trigonom-
etry. √

x′1
2 + y′1

2

√
(
√
x12 + y12 cos(a))2 + (

√
x12 + y12 sin(a))2

√
(x12 + y12) cos2(a) + (x12 + y12) sin2(a)

√
(x12 + y12)(cos2(a) + sin2(a))

Trig Identity: sin(a)2 + cos(a)2 = 1

√
(x12 + y12)× 1

The magnitude of the vector is the same for both observers.
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The magnitude of a vector stays the same for not only 2D space, but 3D
space as well. Since it is difficult to visualize and draw 4D space, you can set
one of the spatial dimensions (x, y or z) to zero and have time as one of the
three axis. As a result, you essentially have a three dimensional figure as seen
below.

Figure 1.13: X, Y and Time

Similar to how a change of the reference frame does not affect the mag-
nitude of a vector, this same principle can be applied to the four dimensional
spacetime.

By changing the frame of reference, each observer can measure different
values for x, y, z, and t, however the magnitude (∆s2) will remain the same.

1.7.2 Derivation of Invariance of the Interval

Recall that the spacetime interval is:

∆s2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

Since the speed of light is 1 in natural units, the spacetime interval equals
zero. As a result, the differences in (∆t, ∆x, ∆y, and ∆z) for A and B is the
relation −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 = 0. Since all observers measure the
speed of light to be the same, observer O satisfies the relation −(∆t)2 +(∆x)2 +
(∆y)2) + (∆z)2 = 0. Assume that the origin for the coordinates of O and O are
the same (t = x = y = z = 0) and (t = x = y = z = 0).

We can write

∆s2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2
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As a tensor,

∆s2 =

3∑
α=0

3∑
β=0

Mαβ(∆xα)(∆xβ)4

Suppose ∆t = ∆r and ∆s2 = 0. We get:

0 = −(∆t)2 + (∆x)2 + (∆y)2) + (∆z)2

(∆t)2 = (∆x)2 + (∆y)2) + (∆z)2

∆r = ∆t =
√

(∆x)2 + (∆y)2 + (∆z)2

The matrix for the tensor is the following
M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33


Using the symmetry of the matrix and the relationship for ∆r. We get:

∆s2 = M00(∆r)2 + 2(

3∑
i=1

M0i∆x
i)∆r +

3∑
i=1

3∑
j=1

Mij∆x
i∆xj

We can show that M0i = 0 for i = 1,2,3 by emitting a beam of light along
the x axis that starts at the origin.

Figure 1.14: Beams of Light Along the X Axis

4Remember that ∆x0 = t, ∆x1 = x, ∆x2 = y, and ∆x3 = z
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This beam travels for ∆r = ∆t = 1. Since it is a light ray, the spacetime
interval equals 0 as well. The beam of light that travels from the origin to
∆r = 1 has the equation:

0 = M00 + 2M01 + M11

For the beam that travels from ∆r = 1 to the origin:

0 = M00 − 2M01 + M11

Now, lets add the the values for M01.

0 = M00 + 2M01 + M11 → 0 = −M00 + 2M01 −M11

0 = M00 − 2M01 + M11

0 = 4M01

M01 = 0

The emission of the right ray can be extended to both the y and z axis
therefore M0i = 0 for i = 1,2,3.

With the Kroneck delta (δij) defined as:{
1 if i = j

0 if i 6= j

We can write

Mij = −(M00)δij (i, j = 1, 2, 3)

Therefore,

∆s2 = M00[(∆t)2 − (∆x)2 − (∆y)2 − (∆z)2]

.
Lets define a function:

φ(v) = −M00

As a result,

∆s2 = φ(v)∆s2

Now we need to prove that φ(v) is equal to 1. There are two parts of the
proof to show that φ(v) is equal to 1. For the first part of the proof, we need
to show that φ(v) = φ(|v|).

There are two observers, O and O. O is moving at a velocity v in the
x direction relative to O. Figure 1.155 shows a rod that is along the y axis
(Perpendicular along the y axis). The diagram does not depict the z axis since
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Figure 1.15: Rod Along The Y Axis

it equals zero. The world lines at the end of the rod are shown as well. You can
see at t=0, x = 0 as well.

Therefore the square of the lenght of the rod is the same as the interval
between the two events A and B.

(∆s)2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

At t=0, both x and z are equal to 0.
Thus

(∆s)2 = (∆y)2

At t=0, both events A and B are simultaneous. These events are simul-
tanteous when measured by O as well. Figure 1.166, shows a clock in O. The
world line of the clock is perpendicular to the y axis and parallel to the t-x plane
and t axis. Refer to figure 1.7 to get a better idea of the orientation relative to
the t axis. This clock that we have selected emits light rays at event P. The
light rays travel to A and B. If you look at the geometric orientation of figure
1.16, you can see that the light from the two events arrives at L at the same
time.

As a result, the two events appear simultaneous to O. If A and B are
simultaneous in O then the interval between the two events is also the square
of the lenght of the rod in O.

∆L
2

= φ(v)∆L2

Since the rod is perpendicular to the velocity of O, the direction of motion
does not matter. The reference frames can also be oriented in any direction in
spacetime since it is not possible to indicate one’s orientation without using a
point of reference. Therefore,

5Figure obtained from: A First Course in General Relativity: Second Edition by Bernard
Schutz

6Figure obtained from: A First Course in General Relativity: Second Edition by Bernard
Schutz
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Figure 1.16: Clock in O

φ(v) = φ(|v|)

For the second part of the proof, we will use the equation ∆s2 = φ(v)∆s2.

There are three frames: O,O and O. O moves at a velocity v relative to O. O

moves at -v relative to O. You can see that O and O are essentially the same.
Therefore:

∆s
2

= φ(v)∆s2

∆s2 = φ(v)∆s2

Using substitution,

∆s
2

= φ(v)φ(v)∆s2

∆s
2

= (φ(v))2∆s2

Since O and O are equal to each other, ∆s
2

is equal to ∆s2 as well.
Therefore,

φ(v) = ±1

Although φ(v) can equal plus or negative 1, we can get rid of the negative
sign by the following scenario.

Imagine that O is moving at a +v in the x direction relative to O.

∆s2 = φ(v)∆s2
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As the velocity becomes smaller and smaller, the two reference frames
start to become the same and therefore φ(v) can not equal a negative value.

lim
v→0

φ(v) = 1

Consequently,

∆s2 = ∆s2

1.8 Minkowski Space

Minkowski Space is an essential topic of special relativity. Minkowski Space
is the combination of the three dimensional Euclidean space and time in four-
dimensions. Minkowski spacetime only applies to special relativity and not
general relativity. General relativity describes relativity under the effects of a
gravitational field which creates a curved spacetime fabric. Minkowski spacetime
is also called flat spacetime as it refers to a spacetime fabric that is unstretched
by the effects of gravity. Figure 1.17 and 1.187 show the difference between
curved and flat spacetime.

Figure 1.17: Flat Spacetime (Minkowski Spacetime)

Figure 1.18: Curved Spacetime (Spacetime in General Relativity)

7Fetched from: https://en.wikipedia.org/wiki/General relativity#/media/File:Spacetime lattice analogy.svg
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1.8.1 Minkowski Metric

The Minkowski Metric is a very common tensor in special relativity. It is defined
as 

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The spacetime interval also equals:

ds2 = (∆t ∆x ∆y ∆z)


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



dt
dx
dy
dz


Normally, when we calculate differences in physical distances, we find ∆

x, ∆ y, and ∆ z. For spacetime, we can no longer resort to just the 3 dimensions.
The Minkowski Tensor is used as a tool to find distortions in spacetime.

For example, imagine that there is a ruler in a gravitational wave detector.
The goal of this ruler is to measure changes in physical distance in the light
beams that are traveling down the arms of the gravitational wave detector.
When a gravitational wave passes through the observatory, both the light beams
and the ruler experiences a change in lenght. Since both the ruler and light
deform, the ruler is not viable in measuring the contraction. Thus, we need a
different tool. The Minkowski Metric is the tool that is used to measure such
contractions.

1.8.2 Light Cones

Light Cones are a way to demonstrate the path light would take in spacetime
if it travels in all directions and starts at a single point in spacetime. Look at
the following figure:

Since light has a finite speed (3 ×108 m/s), there is a limit to how much
distance can be covered in a specific time frame. Since light is also the fastest
speed possible, the maximum speed limit of the universe is the speed of light.
There is therefore a limitation on how fast information can travel: the speed of
light. The red cone represents the maximum distance that information can be
gathered or transmitted over a certain time interval.

Assume that you are an observer at time equals zero (Your reference
point). One year has passed. You can only see events that are within one light
year of your position because nothing can travel faster than light. If you want
to observe a supernova that is two light years away, you need to wait two years
before the light from the supernova can reach you. Your light cone needs to grow
bigger via the passage of time. Similarly, assume that you transmit a signal to
another planet that is 2 light years away. It will two years for the signal to reach
the planet as nothing can travel faster than light.

As you can see in the diagram, as time passes, the size of the cone expands.
Negative time merely refers to the past relative to a reference point (Ex. The
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Figure 1.19: Lightcone Diagram Depicting the Future and Past Light Cone

year 2000 is in the past relative to the present). The area inside of the cone
represent how far something can travel through spacetime if it travels at a speed
less than c. The boundaries of the light cone represent the path that light would
take through spacetime. Anywhere not in the light cone is unreachable unless
more time passes and the light cone expands.

As a result, multiple events can have a common past and future as you
can see in Figure 1.178.

Figure 1.20: The Common Past and Future of Two Events

Assume that a flash of light is released at event A and B. Both flashes
of light are only detectable at a certain time if you were to travel to the common
future that these two events share.

The speed of light also places a limit on how fast information can travel
in the universe. As the universe expands faster than light, some pieces of infor-

8Figure obtained from: A First Course in General Relativity: Second Edition by Bernard
Schutz
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mation will become undetectable as the light from certain events will be unable
to reach Earth. You may ask: How is this possible? Nothing could travel faster
than light. This statement is true, however c is a limit on how fast things can
move through the universe, but it does not place a limit on how fast the universe
can expand itself. A speed limit sign on the road limits how fast cars can move
on the road. It does not describe how fast the road itself can stretch

The spacetime interval can be extended to the concept of light cones as
well. If you recall ∆s2 can be positive, negative, or zero.

1 When ∆s2 is positive, it means that the serperation between the
events extends outside of the lightcone. As a result, these spacelike seperated
events are undetectable for that time frame

2 If ∆s2 is negative, then these events are inside of the light cone. Thus,
these timelike seperated events can be detected at a velocity less than the speed
of light.

3 If ∆s2 is zero, then the events are lightlike seperated. They can only
be detected by moving at the space speed as light. The event is on the boundary
of the light cone.

Light cones are a great visual tool to demonstrate the propogation of
light in spacetime as well as common times between events.

1.9 Time dilation and the Lorentz Contraction/Transformation

The Lorentz Contraction is defined to be equal to
√

1− v2. Recall that this
contraction is in natural units. The Lorentz Contraction expressed in SI units

would be equal to
√

1− v2

c2 . The Lorentz Contraction describes the passage of

time and physical distance at relativistic velocities. For example, assume that
a 1m long object with a clock inside of it is moving at 90% the speed of light
in the x direction for 50 seconds. Under Newtonian physics, the clock would
indicate that 50 seconds passed by and there would be no contraction of the 1m
long object. Through the Lorentz Contraction, we get:

x = x0 ×
√

1− v2

t = t0 ×
√

1− v2

Now if we plug in the numbers from the problem, we get:

x = 1m×
√

1− .902

t = 50s×
√

1− .902

x = 0.436 m t = 21.794 s
The Lorentz Contraction plays an essential role when describe the condi-

tions of an observer.
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1.10 Lorentz Contraction Derivation

To begin deriving the Lorentz transformation, imagine the following. An ob-
server O moves with a speed v on the positive x axis relative to O. Since
movement is in the x direction, lenghts perpendicular to the x axis stay the
same and do not contract.

Thus: y = y and z = z. As moves, time and the x axis must change by
some unknown amount.

t axis(x = 0) : αt+ βx = 0

x axis(t = 0) : γt+ σx = 0

If you refer to Figures 1.7 and 1.8, the t and x axis have the following
equations:

t axis : vt− x = 0

x axis : vx− t = 0

Using the above equations...

t axis : vt− x = 0

vt = x

v =
x

t
αt+ βx = 0

−βx = α

β

α
=
−t
x

β

α
= −v

x axis : vx− t = 0

vx = t

v =
t

x
γt+ σx = 0

−σx = γt

σ

γ
=
−t
x

σ

γ
=
−1

v
γ

σ
= −v

Using substitution:

t axis(x = 0) : αt+ βx = 0

β = −vx
t = αt− αvx
t = α(t− vx)

x axis(t = 0) : γt+ σx = 0

γ = −vσ
x = −σvt+ σx

x = σ(x− vt)
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Figure 1.6 also shows that the events at (t = 0, x = a) and (t = a, x = 0)
are also connected by the same light ray therefore the slopes of the two equations
are the same and α = σ.

We end up with the following equations:

t = α(t− vx) x = α(x− vt)

Using the invariance of the interval

(∆s)2 = (∆s)2

−(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

If you recall from previously (∆y)2 = (∆y)2 and (∆z)2 = (∆z)2 because
the movement of O was in the x direction.

So we get:
−(∆t)2 + (∆x)2 = −(∆t)2 + (∆x)2

Now we plug in t = α(t− vx) and x = α(x− vt)

−(∆t)2 + (∆x)2 = −(α(t− vx))2 + (α(x− vt))2

After simplifying, we get

α2(1− v2) = 1

α = ±
√

1

1− v2

Now we plug α back into the starting equations.

t = α(t− vx)

t =
t√

1− v2
− vx√

1− v2

x = α(x− vt)

x =
x√

1− v2
− vt√

1− v2

y = y

z = z

This is the Lorentz transformation for a boost of velocity. In this case, it
is a boost in the x direction.
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1.11 Twin Paradox

The Twin Paradox is a paradox created by special relativity given two twins.
There are a pair of twins, Rockette and Earthette, that are 20 years old. One
of the twins, Rockette, is sent in a rocket traveling at 99% of the speed of light
(2.97 x 108 m/s). Both sisters have a clock to measure how long it will be before
Rockette returns. Rockette returns to Earth after her clock states that 10 years
have passed by. When she arrives, Rockette is only 30 years old. We would
presume that Earthette should also be 30 years old. However when you account
for the effects of time dilations, Earthette is actually about 91 years old! Would
you still consider them to be twins?

25


